Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

[1,3-Bis(2,3,4,5,6-pentafluorobenzyl)-benzimidazol-2-ylidene]bromido($\boldsymbol{\eta}^{4}$-cycloocta-1,5-diene)rhodium(I)

Muharrem Dinçer, ${ }^{\text {a }}$ Namık Özdemir, ${ }^{\text {a* }}$ Süleyman Gülcemal ${ }^{\text {b }}$ and Bekir Cetinkaya ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Science Faculty, Ege University, 35100 Izmir , Turkey
Correspondence e-mail: namiko@omu.edu.tr

Received 26 February 2007
Accepted 29 March 2007
Online 28 April 2007
The title complex, $\left[\operatorname{RhBr}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{21} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~F}_{10}\right)\right]$, has a slightly distorted pseudo-square-planar geometry. The whole molecule has an approximate mirror symmetry, with the mirror plane passing through the mid-points of the two alkene bonds of the cycloocta-1,5-diene (COD) ligand. The average Rh$\mathrm{C}(\mathrm{COD})$ distance is inversely related to the magnitude of the $\mathrm{Rh}-\mathrm{C}$ (benzimidazole) distance in this type of compound. The molecules are stacked in columns running along the a axis. The crystal structure contains two types of intermolecular C$\mathrm{H} \cdots \mathrm{F}$ interactions, as well as two weak $\pi-\pi$ stacking interactions.

Comment

Nitrogen-heterocyclic carbenes (NHCs) based on the imidazole ring system are a novel class of ligands in organometallic chemistry (Weskamp et al., 2000) which tend to coordinate very strongly to the metal centre. NHCs and their metal complexes continue to attract interest as components in homogeneous catalysis (Herrmann, 2002a). The isolation of the stable imidazolin-2-ylidene and the saturated imidazo-lidin-2-ylidene derivative sparked renewed interest in the chemistry of N -heterocyclic carbenes and their metal complexes (Hahn, 2006). Recently, transition metal complexes of NHCs have been the focus of considerable attention since they can act as catalysts or catalyst precursors in Rh-catalyzed hydroformylation (Chen et al., 2000), Ru-catalyzed olefin metathesis (Fürstner, 2000), cyclopropanation (Çetinkaya et al., 1997), furan synthesis (Küçükbay et al., 1996; Çetinkaya et al., 2002) and Pd-catalyzed Heck or Suzuki coupling (McGuinnes \& Cavell, 2000; Weskamp et al., 1999). However, NHC complexes with fluorinated substituents are rare (Xu et al., 2000). We report here the preparation and characterization of a novel Rh^{I} complex, (II), bearing the fluorinated NHC ligand (Saunders \& McGrandle, 2005).

Complex (II) has a slightly distorted pseudo-square-planar geometry (Fig. 1 and Table 1), if the mid-points of the two double bonds of the cycloocta-1,5-diene (COD) ligand are considered as coordination sites. The metal centre is coordinated to the two alkene bonds of the COD ligand, to a nonsubstituted C atom of the benzimidazole ring system and to

the Br atom. The whole molecule has an approximate mirror symmetry, with the mirror plane passing through the midpoints of the $\mathrm{C} 22=\mathrm{C} 23$ and $\mathrm{C} 26=\mathrm{C} 27$ bonds, and with atoms $\mathrm{Rh} 1, \mathrm{C} 1$ and Br 1 lying on the approximate mirror plane. When these mid-points are considered, it can be said that the complex has a cis arrangement. The angle between the carbene heterocycle and the coordination plane ($\mathrm{Br} 1 / \mathrm{mid}-$ point $\mathrm{C} 22=\mathrm{C} 23 / \mathrm{mid}-$ point $\mathrm{C} 26=\mathrm{C} 27$) is $88.29(14)^{\circ}$. This value is somewhat lower than that reported by Herrmann (2002a), but significantly higher than that reported by Dinçer et al. (2006). The COD ring exhibits a boat conformation, with the $\mathrm{Rh}-\mathrm{C}(\mathrm{COD})$ distances ranging from 2.116 (4) to 2.224 (4) \AA. The Rh1-C22 and Rh1-C23 bond distances are shorter than $\mathrm{Rh} 1-\mathrm{C} 26$ and $\mathrm{Rh} 1-\mathrm{C} 27$; this is not unexpected and is due to the trans influence of the chelating ligand. These results agree with the values in the literature (Ingleson et al., 2001; Vicente et al., 2001).

Comparing the average $\mathrm{Rh}-\mathrm{C}(\mathrm{COD})$ bond length of 2.17 (2) \AA and the $\mathrm{Rh}-\mathrm{C}($ benzimidazole) bond length of 2.010 (3) \AA with literature values, it is observed that $\mathrm{Rh}-$

Figure 1

A view of (II), shown with 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
$\mathrm{C}(\mathrm{COD})$ increases with decreasing $\mathrm{Rh}-\mathrm{C}$ (benzimidazole) distance $[2.167$ (4) and 2.016 (4) A (Baker et al., 2004); 2.161 (2) and 2.018 (2) \AA (Hahn et al., 2004); 2.143 (3) and 2.059 (3) A (Duan et al., 2003)]. The $\mathrm{C}=\mathrm{C}$ bond lengths of the cyclooctadiene ligand differ in that the double bond trans to the carbene ligand $[\mathrm{C} 26=\mathrm{C} 27=1.381(6) \AA$] is shorter than the $\mathrm{C}=\mathrm{C}$ bond trans to the bromide ligand $[\mathrm{C} 22=\mathrm{C} 23=$ 1.392 (6) Å]. However, these distances fall in the expected range for coordinated olefins (Cambridge Structural Database, Version 5.28; ConQuest, Version 1.9; Allen, 2002).

The benzimidazole ring is planar, with a maximum deviation from the plane of -0.012 (2) \AA for atom C1, and makes dihedral angles of $88.69(9)$ and $88.98(12)^{\circ}$ with the C9-C14 and C16-C21 pentafluorophenyl ring planes, respectively, indicating that two pentafluorophenyl rings are almost perpendicular with respect to the benzimidazole ring. The metal-carbon bond distance between the Rh atom and the NHC ligand is in good agreement with those of other rhodium NHC complexes (Günay et al., 2006; Dinçer et al., 2005, 2006). The N1-C1 and N2-C1 bond distances are both 1.359 (4) A. These are significantly shorter than the other $\mathrm{N}-\mathrm{C}$ (carbene) bond distances in (II) (Table 1). The shorter $\mathrm{N}-\mathrm{C}$ (carbene) bonds are indicative of a greater multiple-bond character due to partial electron donation by the N atom to the carbene C atom donor (Herrmann, 2002b; Fröhlich et al., 1997). Theoretical studies also indicate that the stability of these carbenes is due to electron donation from the N -atom lone pairs into the formally empty $p(\pi)$ orbital on the carbene C atom (Heinemann et al., 1996; Böhme \& Frenking, 1996). For this reason, the $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 1$ bonds are shortened. It is observed that the steric effect of the pentafluorophenyl rings on the $\mathrm{Br}-\mathrm{Rh}-\mathrm{C}$ (carbene) angle and $\mathrm{Rh}-\mathrm{Br}$ bond results in increased angle [92.82 (9) ${ }^{\circ}$] and shortened bond [2.5090 (5) Å] values relative to those in similar compounds (Günay et al., 2006; Dinçer et al., 2005; Herrmann, 2002b; Danopoulos et al., 2002).

Figure 2
The molecular packing of (II), viewed along the b axis. Dashed lines show the $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\pi-\pi$ interactions.

In the crystal structure of (II) (Fig. 2), molecules are packed in columns running along the a axis. The molecules in each column are linked to one another in a zigzag arrangement via $\mathrm{C} 25-\mathrm{H} 25 A \cdots \mathrm{~F} 1^{\mathrm{i}}$ hydrogen bonds (geometric parameters and symmetry codes for hydrogen bonds are given in Table 2), resulting in the formation of molecular chains along the a axis. In addition, there are $\pi-\pi$ stacking and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~F}^{\mathrm{ii}}$ interactions between the molecules in inversion-related columns. In these weak $\pi-\pi$ interactions, the $\mathrm{C} 16-\mathrm{C} 21$ pentafluorophenyl ring in the molecule at (x, y, z) stacks above the ring at ($1-x,-y, 1-z$), with a distance of 3.956 (8) Å between the ring centroids and a perpendicular distance of 3.402 (8) \AA between the rings. Inversion-related columns are connected to similar neighbouring columns by means of another weak $\pi-\pi$ interaction. In these $\pi-\pi$ interactions, the $\mathrm{C} 2-\mathrm{C} 7$ benzimidazole ring in the molecule at (x, y, z) stacks above the ring at $(2-x,-y, 2-z)$, with a distance of 3.924 (8) Å between the ring centroids, and a perpendicular distance of 3.537 (8) \AA between the rings. There are no other significant intermolecular interactions, such as $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, in the crystal structure of (II).

Experimental

All manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques. The solvents and reagents were obtained from Aldrich, Fluka and Merck. $[\mathrm{Rh}(\mu \text {-OMe })(1,5-\mathrm{COD})]_{2}$ (Uson et al., 1985) was synthesized according to literature procedures. A 50 ml Schlenk tube was charged with (I) (Gülcemal, 2005) $(111.80 \mathrm{mg}, 0.2 \mathrm{mmol}),\left[\mathrm{Rh}(\mathrm{OMe})\left(\eta^{4}-\mathrm{COD}\right)\right]_{2}(48.40 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 5 ml of dichloromethane. The solution was stirred for 24 h at room temperature and heated under reflux for 2 h . Upon cooling to room temperature, hexane (10 ml) was added to the mixture. The resulting solid was filtered off and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($1: 5 \mathrm{v} / \mathrm{v}, 18 \mathrm{ml}$) (yield $115 \mathrm{mg}, 78 \%$; m.p. 509-511 K). Analysis calculated for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{BrF}_{10} \mathrm{~N}_{2} \mathrm{Rh}$: C 46.97, H $2.70, \mathrm{~N} 3.78 \%$; found: C 46.27, H $2.94, \mathrm{~N} 3.71 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.94(q, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}$, COD-CH 2), 2.37 (br, 4H, COD-CH 2), $3.52(s, 2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 5.22(s$, $2 \mathrm{H}, \mathrm{COD}-\mathrm{CH}), 5.92\left(d, 2 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{~F}_{5}\right), 6.39(d, 2 \mathrm{H}, J=$ $\left.16 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{~F}_{5}\right), 7.09(q, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.21(q, J=3.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 27.42\left(d, J=21.4 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right)$, $31.88\left(d, J=22.2 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}_{2}\right), 40.78\left(\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{~F}_{5}\right), 69.04(d, J=$ 13.8 Hz, COD-CH), 100.28 ($d, J=6.9 \mathrm{~Hz}, \mathrm{COD}-\mathrm{CH}), 108.42,108.85$, $122.13,133.79,135.70,138.16,139.16,141.64,143.37,145.83$ (Ar-C), $199.03\left(d, J=50.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{carb}}-\mathrm{Rh}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-140.98(2 \mathrm{~F}$, $\left.\mathrm{F}_{o}\right),-153.83\left(1 \mathrm{~F}, \mathrm{~F}_{p}\right),-161.51\left(2 \mathrm{~F}, \mathrm{~F}_{m}\right)$.

Crystal data

$\left[\mathrm{RhBr}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{21} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~F}_{10}\right)\right]$
$M_{r}=769.29$
Monoclinic, $P 2_{1} / c$
$a=10.3441$ (5) \AA
$b=21.4937$ (10) £
$c=15.4717$ (7) \AA
$\beta=125.629(3)^{\circ}$
Data collection
Stoe IPDSII diffractometer
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.288, T_{\text {max }}=0.545$

$$
\begin{aligned}
& V=2795.9(2) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.13 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& 0.52 \times 0.42 \times 0.36 \mathrm{~mm}
\end{aligned}
$$

36192 measured reflections 6179 independent reflections 4843 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.101$
$S=1.05$
6179 reflections

389 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.79 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Rh1-C1	$2.010(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.359(4)$
Rh1-C22	$2.116(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.392(4)$
Rh1-C23	$2.118(4)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.456(4)$
Rh1-C26	$2.222(4)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.359(4)$
Rh1-C27	$2.224(4)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.400(4)$
Rh1-Br1	$2.5090(5)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.464(4)$
C1-Rh1-C22	$91.62(14)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7$	$111.6(3)$
C1-Rh1-C23	$90.43(14)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8$	$124.2(3)$
C22-Rh1-C23	$38.38(17)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$124.1(3)$
C1-Rh1-C26	$160.15(16)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$104.5(3)$
C1-Rh1-C27	$163.35(16)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{Rh} 1$	$127.7(2)$
C26-Rh1-C27	$36.19(17)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Rh} 1$	$127.8(2)$
C1-N1-C2	$111.6(3)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$113.3(3)$
C1-N1-C15	$124.2(3)$	$\mathrm{N} 1-\mathrm{C} 15-\mathrm{C} 16$	$113.7(3)$
C2-N1-C15	$124.0(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C25-H25A $\cdots \mathrm{F} 1^{\mathrm{i}}$	0.97	2.44	$3.397(6)$	167
C3-H3 $\cdots \mathrm{F}^{\mathrm{ii}}$	0.93	2.50	$3.331(5)$	148

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y,-z+1$.

H atoms were positioned geometrically and treated using a riding model, fixing the $\mathrm{C}-\mathrm{H}$ bond lengths at $0.97,0.98$ and $0.93 \AA$ for CH_{2}, CH and aromatic CH groups, respectively. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This study was supported financially by the Research Centre of Ondokuz Mayıs University (project No. F-425).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3078). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baker, M. V., Brayshaw, S. K., Skelton, B. W. \& White, A. H. (2004). Inorg. Chim. Acta, 357, 2841-2849.
Böhme, C. \& Frenking, G. (1996). J. Am. Chem. Soc. 118, 2039-2046.
Çetinkaya, B., Gürbüz, N., Seçkin, T. \& Özdemir, İ. (2002). J. Mol. Catal. 184, 31-38.
Çetinkaya, B., Özdemir, İ. \& Dixneuf, P. H. (1997). J. Organomet. Chem. 534, 153-158.
Chen, A. C., Ren, L., Decken, A. \& Crudden, C. M. (2000). Organometallics, 19, 3459-3461.
Danopoulos, A. A., Winston, S. \& Hursthouse, M. B. (2002). J. Chem. Soc. pp. 3090-3091.
Dinçer, M., Özdemir, N., Gülcemal, S., Çetinkaya, B. \& Büyükgüngör, O. (2006). Acta Cryst. C62, m252-m254.

Dinçer, M., Özdemir, N., Günay, M. E., Çetinkaya, B. \& Büyükgüngör, O. (2005). Acta Cryst. C61, m373-m375.

Duan, W.-L., Shi, M. \& Rong, G.-B. (2003). Chem. Commun. 23, 2916-2917.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fröhlich, N., Pidun, U., Stahl, M. \& Frenking, G. (1997). Organometallics, 16, 442-448.
Fürstner, A. (2000). Angew. Chem. Int. Ed. 39, 3012-3043.
Gülcemal, S. (2005). MSC thesis, Ege University, İzmir, Turkey.
Günay, M. E., Aygün, M., Kartal, A., Çetinkaya, B. \& Kendi, E. (2006). Cryst. Res. Technol. 41, 615-621.
Hahn, F. E. (2006). Angew. Chem. Int. Ed. 45, 1348-1352.
Hahn, F. E., von Fehren, T., Wittenbecher, L. \& Fröhlich, R. (2004). Z. Naturforsch. Teil B, 59, 544-546.
Heinemann, C., Müller, T., Apeloig, Y. \& Schwarz, H. (1996). J. Am. Chem. Soc. 118, 2023-2038.
Herrmann, W. A. (2002a). Angew. Chem. Int. Ed. Engl. 41, 1290-1309.
Herrmann, W. A. (2002b). Adv. Organomet. Chem. 48, 1-69.
Ingleson, M., Patmore, N. J., Ruggiero, G. D., Frost, C. G., Mahon, M. F., Willis, M. C. \& Weller, A. S. (2001). Organometallics, 21, 4434-4436.

Küçükbay, H., Çetinkaya, B., Guesmi, S. \& Dixneuf, P. H. (1996). Organometallics, 10, 2434-2439.
McGuinnes, D. S. \& Cavell, K. J. (2000). Organometallics, 19, 741-748.
Saunders, G. C. \& McGrandle, S. (2005). J. Fluorine Chem. 126, 449-453.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Uson, R., Oro, L. A. \& Cabeza, J. A. (1985). Inorg. Synth. 23, 126-130.
Vicente, J., Gil-Rubio, J. \& Bautista, D. (2001). Inorg. Chem. 40, 2636-2637.
Weskamp, T., Böhm, V. P. W. \& Herrmann, W. A. (1999). J. Organomet. Chem. 585, 348-352.
Weskamp, T., Böhm, V. P. W. \& Herrmann, W. A. (2000). J. Organomet. Chem. 600, 12-22.
Xu, L., Chen, W., Bickey, J. F., Steiner, A. \& Xiao, J. (2000). J. Organomet. Chem. 598, 409-416.

